Schauder estimates for higher-order parabolic systems with time irregular coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conormal Problem of Higher-order Parabolic Systems with Time Irregular Coefficients

The paper is a comprehensive study of Lp and Schauder estimates for higher-order divergence type parabolic systems with discontinuous coefficients on a half space and cylindrical domains with the conormal derivative boundary conditions. For the Lp estimates, we assume that the leading coefficients are only bounded and measurable in the t variable and have vanishing mean oscillations (VMOx) with...

متن کامل

Gaussian Estimates for Fundamental Solutions of Second Order Parabolic Systems with Time-independent Coefficients

Abstract. Auscher, McIntosh and Tchamitchian studied the heat kernels of second order elliptic operators in divergence form with complex bounded measurable coefficients on Rn. In particular, in the case when n = 2 they obtained Gaussian upper bound estimates for the heat kernel without imposing further assumption on the coefficients. We study the fundamental solutions of the systems of second o...

متن کامل

Schauder and Lp Estimates for Parabolic Systems via Campanato Spaces

The following note deals with classical Schauder and L estimates in the setting of parabolic systems. For the heat equation these estimates are usually obtained via potential theoretic methods, i.e. by studying the fundamental solution (see e.g. [3], [8], and, for the elliptic case, [7]). For systems, however, it has become customary to base both Schauder and L theory on Campanato’s technique. ...

متن کامل

Schauder Estimates for Elliptic and Parabolic Equations

The Schauder estimate for the Laplace equation was traditionally built upon the Newton potential theory. Different proofs were found later by Campanato [Ca], in which he introduced the Campanato space; Peetre [P], who used the convolution of functions; Trudinger [T], who used the mollification of functions; and Simon [Si], who used a blowup argument. Also a perturbation argument was found by Sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2014

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-014-0777-y